# Public Meeting to discuss Motor Vehicle CNG Fuel Specifications

March 7, 2001

**California Environmental Protection Agency** 



**Air Resources Board** 

#### Overview

- **→** Background
- **→** Issues
- **→** Impacts
- **→** Fuel Quality
- **→** Fleets
- **→** Options

**Background** 

#### Alternative Fuels Regulations

- ★ Title 13, CCR, sections 2290-2292 originally adopted in 1992
- ◆ Provides engine manufacturers with a known fuel quality for designing engines
- ★ Ensures consistent fuel quality to prevent engine performance problems and excess emissions

Background

### Motor Vehicle CNG Specifications

| Hydrocarbons  | Methane (min.)                                    | 88 mol%        |
|---------------|---------------------------------------------------|----------------|
|               | Ethane (max.)                                     | 6 mol%         |
|               | C3+higher (max.)                                  | 3 mol%         |
|               | C6+higher (max.)                                  | 0.2 mol%       |
| Other Species | Hydrogen (max.)                                   | 0.1 mol%       |
|               | Carbon Monoxide (max.)                            | 0.1 mol%       |
|               | Oxygen (max.)                                     | 1.0 mol%       |
|               | Inert Gases (CO <sub>2</sub> and N <sub>2</sub> ) | 1.5 - 4.5 mol% |
|               | Sulfur (max.)                                     | 16 ppmv        |
|               | Water, Particulates, Odorant                      |                |
|               |                                                   |                |

Background

#### Statewide CNG Supply

|                                      | Volume | Complying Fuel |
|--------------------------------------|--------|----------------|
| Imports                              | 85%    | 100%           |
| California Production                |        |                |
| Associated gas                       | 12%    | ~0%            |
| Gas Wells                            | 3%     | 100%           |
| ,                                    | 100%   |                |
| Based on 1997 supply/production data |        |                |

Issues

#### **Current Situation**

- ★ Limited availability of complying fuel in certain regions
  - San Joaquin Valley
  - South Central Coast
- → Production- commercial vs. MV grade
  - Associated gas tied to oil production
- → Distribution- Not segregated to handle two fuels

*Impacts* 

# Impacts of Off-Specification CNG

- → Potential engine performance and durability issues
- **→** Emissions
- → Degree of Impact dependent on engine /vehicle technology
  - open loop vs. closed loop
  - heavy duty vs. light duty

#### Fuel Quality Variation in SJV

| Component | Average | Range      | Standard  |
|-----------|---------|------------|-----------|
| Methane   | 86      | 79 - 97    | 88.0 min. |
| Ethane    | 9       | 0 - 12     | 6.0 max.  |
| C3+       | 3       | 0 - 9      | 3.0 max.  |
| Inerts    | 3       |            | 4.5 max.  |
| $CO_2$    | 2       | 2 - 3      |           |
| $N_2$     | 1       | 0 - 1      |           |
| BTU       | 1100    | 990 - 1181 | N/A       |

#### Fuel Quality Variation in SCC

| Component | Average | Range      | Standard  |
|-----------|---------|------------|-----------|
| Methane   | 88      | 86 - 97    | 88.0 min. |
| Ethane    | 5       | 0 - 8      | 6.0 max.  |
| C3+       | 4       | 0 - 6      | 3.0 max.  |
| Inerts    | 3       |            | 4.5 max.  |
| $CO_2$    | 2       | 2 - 3      |           |
| $N_2$     | 0       | 0 - 1      |           |
| BTU       | 1095    | 990 - 1141 | N/A       |

# Compliance with Existing Standard

- → 11 % of SCC supply currently complies
- ♦ <1 % of SJV supply currently complies
  </p>

#### Fleet Information by Region

|                | SJV | SCC |
|----------------|-----|-----|
| HD Unknown     | 6   | 6   |
| HD Closed Loop | 35  | 60  |
| MD             | 100 | 0   |
| LD Dedicated   | 2   | 59  |
| LD Bifuel      | 30  | 39  |
| Total          | 173 | 164 |

## **Options**

#### Objectives

- → Protect existing and future engines
- → Minimize emission impact
- ◆ Provide adequate CNG availability

#### Improve Fuel Quality

- **→** Blending
- → Membrane Treatment Technologies
- **→** LCNG Technology

#### Revise CNG Fuel Specifications

- ◆ Broaden Existing CNG Fuel Specifications
- ♦ New CNG Fuel Specifications based on Methane Number set for:
  - Existing heavy-duty vehicles
  - Advanced heavy-duty vehicles
  - Light-duty vehicles

#### Methane Number (MN)

- ★ Experimentally derived relationship between fuel composition and engine performance (knock)
- → MN primarily dependent on content of methane, ethane,  $C_3$ , and  $C_4$ + in the fuel
  - Example: current specification approximately 81MN
- ★ Engines require a minimum MN to prevent engine knocking
- → Minimum MN dependent on engine technology

#### Minimum Methane Number

| Engine      |                                  |
|-------------|----------------------------------|
| Technology  | MN                               |
| Existing HD | 80                               |
|             |                                  |
| Advanced HD | 73                               |
| Light Duty  | 65 (current minimum gas quality) |

#### Methane Number by Region

|         | Spec. Gas                             | SCC    | SJV      |
|---------|---------------------------------------|--------|----------|
| Average | · · · · · · · · · · · · · · · · · · · | 79     | 79       |
| Range   | 81-108                                | 72-107 | 67 - 108 |

### Percent CNG Meeting Methane Number by Region

| Methane Number | SJV   | SCC   |
|----------------|-------|-------|
| 81             | < 1 % | 11 %  |
| 80             | 77 %  | 25 %  |
| 73             | 93 %  | 100 % |
| 65             | 100 % | 100 % |